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I. INTRODUCTLON

m At the BRL, as in many other ballistic laboratories, closed bomb

; ﬁﬁ} g experiments are used to provide information on the burning characteristics

L of gun propellants. One significant advantage of the closed bomb technique
-%}j is its ability to provide burning rate data over a wide pressure range Fro
;Ciﬁ a limited number of experiments. A further advantage 1s that the combustion

gl conditions in the closed bomb approuximate the combustiou conditions in the
;@x . gun. Significantly, the bomb permits examinatien of propellants ip the

exact geometry and granulation as used in the gun. The principal disad-
vantage of the closed bomb method, however, is the complexity of rhe data
reduction technique. Tied in with this is the necessity to make a variety
of assumptions and simplifications durling the theory development to make the
treatment tractable, even when using a computer.

Early lumped parameter interior ballistic treatments viewed closed boub
propellant burning rate data as empirical information to be adjusted by the

';3%31} - ballistician, according to somewhat subjective criteria, to help obtain a
Jﬂ":f _suitable ballistic match between the measured gun firings and the code
L ‘ simulations. In effect, the doctored burning rates were used to help

Q'! account for factors aot explicitly treated in the interior ballistic models;

T factors such as erosive burning effects, bore friction, and heat loss,

‘i{ In the 1970's, with the development of iicreasingly sophisticated
) interior ballistic codes which sought to include more of the physics
involved in the interior ballistic event, a strong interest arose in buraing

:‘i rates as iatrinsic propellant propertles as opposed to empirical infor-
i mation. This interest spawned the development of a number of closed bomb
'ﬁ}}} burning rate codes incorporating, in their turn, a more exact treatment of
e the combustion Erocess in the bomb. Notable among these were the works by

D pricel | Robbins® and Krier,3 The development of the codes was, in turn,

i followed by comparison studies of the relative values of burning rates

r ootained from closed bombs and strand burners. Since strand burner
measurements only involve the measurement of time for a given length of
sample to burn at a fixed pressure, agreement betwcen the two methods would
constitute an excellent calibration of computed closed bomb burning rates

l¢,price and A, Juhasz, “Versatile User—Qviented Clo: 1 Bomb Data Reduction
Program (CBRED)'" Balllstic Research Laboratories Report, BP'L Report No.
2018, September 1977,

;.ﬂ, . 2F.W. Robbins and A.W. Horst, "Numcrical Simulation of Closed Bomb
R Performance Based on BLAKE Code Thermodynamic Data," Indian Head Memorandum
Lo Report, IHMR 76-25Y, Novewber, 19706,

;“ 3H. Krier, "Extracting Burning Rates for Multiperiorated Propellant From
e Closed Bomb Testing," Aeronautical and Astronautical Engineering Department,
'WQE_ University of Illinois at Urbana~-Champaipgn, Technical Report AAE 78-2Z, ULLU-

S ENG 78~-0502, July, 1978.
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agalnst measured quantities. At least two indepeadent studies? 5 confirmed
the agreement between the methods. The comparability of closed bomb burning
raLe data (on 1dentical propellant samples) from various US installations
was exanmined under a JANNAF sponsored round robin study.5 The agreement
between installations was, ultimately, quite good. This indicated that the
differences in computational methods were minor as far as _he final results
were concerned.

The results of the round robin study brought up the question as to the
necessity of modeling heat loss to the bomb and if necessary, what kind of
model should be used and how rigorocus should it be treated. The various
closed bomb codes used 1n the round robin for data reduction did use
different heat loss treatments. The siMpCE? code, which was used by Naval
ordnance Statlion for data reduction, has a heat loss treatment that derives
a constant from the difterence between the theoretical and the observed
maximum pressure and multiplies that constant by varilous pressures to get
the heat loss at that pressure, The Large Caliber Weapon Systems Laboratory
at Dover reduced their data using NCBOMB, which models heat loss indirectly
by using P/P ax for burn rate. The Naval Weapons Center at China Lake uses
a modified version of CBRED for data analysis. The CBRED2 code was used by
the Ballistic Research Laboratory for the round robin study. This code has
two heat loss options that include a coanstant averaging based on the
difference between the observed pressure and the adiabatic prediction, and a
proportional wmethod derived from the post Pax dp/dt data. The constant
averagling, or standard, option computes the total heat loss by taking the
difference between the computed adiabatic Lnternal energy of the system and
the internal energy observed from P, ... This is then divided by the total
burn time to get an average heat loss vate. The proportional option
analyzes the heat loss fnto its radiative aand coavective componeunts. It 1is
assumed that during the actual event, the heat loss is due to both
convection and radiation to the chamber walls. The further assumption is
that after burning has ceased, the entire heat loss is due to radiation
alone. Using the ideal-gas law, a temperature-time profile of the post Phax
data 1s obtained. This 1s matched to a radiative heat loss rate caiculated
from the same dp/dt data. Now, this array along with the wall surface area
1s used to penerate a vadlative heat transfer coefficient that remains a
constant throughout the analysis. Onee the radiative heat transfer
coefficient is kunown, this is used in conjunction with the mass generation
rate to compute a convective heat transfer coeftficient at every point in thne
analysis. The program now cowputes the heat loss rate for each data point
using standard heat transfer technlques.

Locally, we became concerved when we noted significant discrepancies
between closed bomb burning rates of identical propellants reduced using the

4. Mitchell and A. Horst, "Comparitive Burnuing Rate Study,'" CPIA
Publication 281, Bulletin of the L[3th JANNAF Combustion Meeting, Chemical
Propulsion Information Agency, Johns Hopkins University/Applied Physics
Laboratory, September, 1976.

Yh.A. Juhasz, ld., "Round Robin Results owf the Closed Bomb and Strand
Burners' Applied Physics Laboratory, CPLA Publication 361, July, 1982,
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same reduction code, CBRED2. The ditference in the data could be traced to
the bombs in which the samples were fired. One of these wias the standard
200 cec chamber used in the round robin study. The other was a fixture
adapted from the breech section of a .50 caliber gun. A check on the
ignition methods falled to account for the ditfereunce. An examination of
the fixtures, however, revealed significant differences in the surface area
to volume ratios (s/v) of the two devices (2.67 cm—l in the 0,50 cal.
fixture and .924 «:‘.m-1 in the 200 cc device) and in the thermal
conductivities of the chamber walls. (The 0.50 cal. fixture used a brass
cartridge case to contain the propellant while the walls of the 200 cc bomb
were steel), The question came down to whether the differences noted in
burning rates c¢ould be due to Increased heat loss during burning as a result
of the increased s/v and/or increased thermal conductivity of the brass
case—-lined 0.50 caliber fixture.

Coincidentally a series of experiments had been set up to confirm the
accuracy of the BLAKE code. The experiment involved varying the s/v ratio
of the closed bomb (1-5 cm *), by using steel coll inserts, for multiple
loading deansities (0.1-0.4 g/ce). The propellant was to be a fast burning,
single base propellant., The decision was wade to use the data from that
series of closed bomb shols as a starting point and add some additional
shots using a propellant with a slower burning rate while replacing the
steel coils, used to vary s/v, with brass coils to round out the matrix.

I1. EXPERIMENTAL

Closed chamber tests were performed Ln the 830 MPa test fixture
described in Fig. 1 and manufactured by Harwood Enginecring. The chamber
cavity was 10.9 cm long and 5.08 cm in diameter with a hemilspherical rear
inner surface. The volume used for data calculations was 210 cec. Pressure
measurements were made with a Kistler 607C4 transducer tied into a Kistler
504K charge amplifier. Data acquisition was made on a Nicolet Explorer [1L
digital oscilloscope, followed by data reduction on a PDP 11/34 conputer
using the CBRED2 code.

The surface area to volume ratios were adjusted by using steel or brass
insert colls of varying dismeters and nesting one inside the other when
necessary. These ratios ranged frowm 0.924 el to 5.05 ea™l. Fabrication
of the coils was done on a mass basis by Eirst determining the mass per unit
length of the wire in use, calculating the volume that the coil was to
occupy, wrapping the wire around a4 sultable mandrel, and trimming the
resulting coil to obtain the correct mass.

Samples were ignited using an Atlas M~100 electric match with 1 g clean
burning ignition material (CBL) enclosed in a dacron patch tiled around the
head of the match, CBIL, rather than black powder, was used as the {gniter
material for more exact thermochemical calculations in the BLAKE code. The
propellant used for most of the firings was M-10, Lot RAD-PE-481-27. A
Limited number of shots were Fired using NOSOL 163, Lot RAD~1-]. The NOSOL
363 was fired with two scpavate web sizes, 0.271 cm and 0.031 eme  All of
the samples were prepared immediately before Firing according to our usual
procedure in which the sample was bagged in a cellephane tube with the
igniter in the front section of the charge (sce Fig. 2). The samples

9
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were closed by tyiug the cellophane bag around the match leads with dacron
thread. For calculation purposes, the mass of each component in the charge
was recorded (dacron, match, CBIL, cellophane, propellant). Loading of the
closed bomb fixture was accomplished by attaching the charge leads to the
firing electrode, placing the appropriate coils around the charge, and
inserting the entlre assembly as a unit, The exceptions to this were the M-
10 and the NOSOL 363 both at s/v of 5 en™ ! and loading densities of 0.4 g/cc
and 0.3 g/cc respectively. These samples were, by necessity, prepared by
enclosing the coils in the cellophane with the charge. Hach matrix element
was dassigned a number and a random numwber generator was used to determine
shot order. Sample weights ranged from 17.5 g to 84.0 g to gilve loading
densities from 0.1 g/cc to 0.4 g/cc.

ILL. RESULTS & DISCUSSION

The two propellants used in the experiment: a single base, fast burning
M~-10 (web=0.058 cm) and the two samples of a slower burning, double base
NOSOL 363 (web=0.271 & 0.081 cm), showed the same trends for the various
comparisons that were done, The constant heat loss option reductions show
little change 1in the extracted burning rates from varying either s/v or
loading density. The reductions done using the prouportional heat loss
option show a continual increase 1in slope at constant loading density as s/v
increases. Differences start to show up between the constant and
proportional options as s/v lncreases past one. Experimental results from
use of the brass coil turned out as expected. The ruductions of the shots
using brass at s/v of three were very similar to those using steel coils at
s/v of filve,

We expected the maximum pressure to decrease, as s/v increased at the
same loading density, due to the increased surface area extracting wore heat
from the chamber gases duriuag the pressure rise. The initial results
indicated that, fondeed, the experiment did work in the expected manner. As
can be seen in Table 1, as s/v increased at any constant loading density,
the maximum pressure obtalned decreased.

The CBRED2 data reduction program gives results in graphical forwm of
burn racte vs. pressure. Graphs can be produced on log-log plots to give the
burning rate exponent but as we were doing a comparitive study, the decision
was made to use linear scales here as the log-log scales can mask discrete
variations in the burn rate., All of the data was reduced using both of the
heat loss options available, constant and proportional. A few shots were
also reduced with the assumption that there was no heat loss. The multiple
heat loss reductions were decided upon after seeing the initial data
reduction results, mentioned in the previous paragraph. Three repetitious
of each matrix option were fired and average plots were constructed from
plot overlays within each option. The data was then compared by over-
plotting the various data sets. FEach one of the variables: heat loss,
loading deasity, and s/v was studied while keeping the other two coustant.

The derived burn rates of the data, reduced using the constant heat
loss option, show good agrecmwent as the s/v changes at a constant loading
density. This can be scen by examining Fig. 3. The agreement is especilally
rood at 0,3 g/cc, which gives a maximum pressure similiar to what a large

12




TABLE 1. THE AVERACE MAXIMUM PRESSURE (MPa) AT EACH MATRIX OPTION
¢ FROM THE M~10 SHOT WITH THE STEEL COILS

a/v LOADING DENSITY (g/cc)

(en™t) 0.1 0.2 0.3 0.4
- 1 120.9 266.5 443.9 662.1
X 2 11640 257.1 442.8 654.7
| 3 111.9 253.2 438.8 652.2

G 5 108.0 247.5 424.9 653.7
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caliber gun typically experiences. When the data is compared at counstant
s/v over all loading densities, the burn rates agaln compare favorably. As
Fig. 4 shows, the slopes at loading densities of .2, 0.3, and 0.4 g/cc are
virtually identical., The slopes at Q.1 g/cc vary from the others, but the
correlation at this loading density 1s seldom good. Any awount of ignition
delay, but especially long ones, can have large effects at such a low
loading density. 1t may be possible to iuput tabular, rather than average,
thermochems and get hetter agreement,

The derived buru rates of the data reduced using the proportional heat
less option do not agree as well as those from the constant hezat loss
option. These burn rates increase 10%-12% as s/v changes frow one to five
at any one loading density (see Fig. 5). When the data obtained at the
various loading densitles is compared at constant .., v ratios, the slope
decreases about 8% at s/v of 5 el as the loading density goes from 0.1 to
D.4 g/cc (see Fig. 6). At s/v of 1 cm"l, the slopes remain almost constant
as the loading deasity changes.

The overall differeuces 1in the results between the counstant and
proporticnal heat loss options are 1nteresting. Close examination of the
proporticnal rasults shows that there is a small but distinct slope change,
or dip, in the regime of the wmaximum mass genevation rate. As the s/v ratio
ilncreases, this variation in slope also increases. This is to be expected
when one takes into consideration how the heat loss coefficlent affects the
mass generation rate In the data reduction prograu.

The equation below represents the rate of conversion of solid to gas
(mass burning rate) in CBREDZ.

dwp/dt = (A + B) / ReTop ~ P[1/p) = n]
where:

Ry, = gas coanstant for the systea

Top = isochoric adiabatic propellant flame temperature

P = pressure
n = propellant covolume

p= propellant deasity

dp
A= Vs it (System Volume Term)

B = HL (y = 1) (Heat Loss)

As can be seen, the computed mass burinlng rate increases if the heat
loss term (B) increase:, In the constant heat loss option, the value of B
remains the same throcvglhout the reduction. For the proportional option,
that same heat loss term iuncreases when tha instantaneous mass flow
increases, which fmplies that the two terms feed each other. 1If the heat
loss term can be drastically locreased, as in our experiment, by purposely

15
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introducing coils to increase the surface area avaitable for heat transfer,
then the computed burning rate will be artificially elevated at high mass
geueralbion rates.

Comparisons of the constant aand pruportional heat loss options show
little difference at s/v of one. In fact, oune of tle matrix options was
reduced assuming no heat loss and the resultant bur.ilng rate curve is
indistinguishable from either the constant or proportional option (sce Fig.
7). As s/v iucreases, however, the proportional option continually shows an
increase in burning rate; relative to the constant option (see Fig. 8).

This is as much as 17% at s/v of five,

The above results suggest that, with CBRED2 and possibly other data
reduction programs, closed bomb burning r4te data, obtained with vessels
with "low" s/v values, is not very sensitive to heat loss treatment.
However, the rules appear to get modified as the s/v increases past 2 cm~1.
This is fortunate because typilcal closed bombs have a s/v of less than
two. All the closed bombs used in the round robin exercise had a s/v of
close to | cm !, Closed bombs in use at the Balllstic Research Laboratory
(with the exception of the 0.50 cal., fixture mentioned in the Iintroduciion)
all have a s/v between 0.8 and 1.7 cm-]. For exawple, our maln 200 cc homh
is 10.5 cm long and 5.1 cm in diameter to give a s/v of 0.92 e, The
primary 700 cc vessel has an inside cavity 34 cm long with a diameter of 5.1
cm to give a s/v of 0.85 ca”t, According to these results and the bombs we
presently have iu opevation, using either one of the heat loss options
should give us valid buruing rate data.

Significantly, it was this program, CBRED2, that was used by the BRL
for its contributions to the JANNAF Round Robin. Those results were in good
agreement with the other closed bomb results as well as the straund burner
data that was presented. The CBREDZ burning rate data, therefore, has been
"calibrated" agailnst other data reduction techniques as well as against
directly measured burning rate values. Any effects we may have observed
here at high s/v values for the proportional option are negligible under
aormal closed bomb counditions.

Up to this point, all of the results have been taken from data obtained
by shooting M-10, with aud without steel colls. The burning rates computed
with the constant heat loss option all show good slove agreement and little
sensitivity to large changes in s/v value. The proportional option, while
being much more rigorous in its heat loss treatuent, appears to have some
sensitivity to falrly large s/v changes. The two reductions that were done
assuming no heat loss were not sufficient to get aay real! treuads, but at
0.2 gfce and 1 em™) the results were alumost identical to the other two
options.

After vbserving the results from the M=10 firings, whlich used a single
base propellant with a small web to give a fast burning zranulation, the
decision was made to increase the matrix using a slower propellant. Some
unusual effeects have been observed on the burning rites of very slow burning
gralus and we were Interested in finding out how the increase in s/v would
Influence results from a4 slower burning charge, The propellant selected was
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some single perforated NOSOL 363 extruded in two different web sizes (0.081
cm & 04271 cm) from the same lot. We decided to incorporate both of thenm
into the matrix at 0.3 g/cc and s/v ratios of | & 5 cm'l. The reduced
burning rates (but not the burn times) of the two different sized NOSOL 363
samples werce identical. The proportional options showed a very slight
increase in slope vver the constant options at s/v of 1 em ', and a 12%
increase at s/v of 5 cm"l. This compares well with the results from the M-
10 comparisons aud may indicate that the heat ioss options are consistent,
between fast and slow prupellants, in their results.

A note of caution is in order concerning our interpretation of the
NOSOL 303 data. The M-10 went frow 10%-90% P .. in about 1.5 milli~
seconds, The NOSOL 363 with the large web covered the same event in about
9.5 milliscconds. We are examining the possibility that the infinite heat
sink assumption was not valid over the 1lucreased time spans.

Our local discrepancy between the computed burning rate data obtained
in the 200 cc bomb and the fixture made from the breech section of a 0.50
caliber gun was still disturbing. Was it pussible that increased thermal
conductivity from the brass cartridge case could be responsible for the
fncrease in computed burn rates? The decision was wmade to replace the steel
colls with a brass coil for shots with the M-10 at 0.3 g/cc and s/v of 1 and
3 em L. The results showed almast no differeuce from the burning r4te
curves reduced from the steel coil flrings. The constant option results
that came frowm using tne brass coll were Ldentical to those from the steel
coils. The proportional results from the brass colls at a s/v of three were
very close to the rvesults from the steel coils at a s/v of five. This was
as expected due to the higher thermal ditfusivity of the brass. At this
time, the {nitial discrepancy between the results Ls still unexplained.

For all this discussion on derived burn rates, the primdary purpose of
the data ts to predict gun system pertformance. To that ead, we took varlous
closed bomb burning rate data from thls study and keyed it iatoe an interior
ballistic code for input into a 105-mm system. AllL of the burning rate data
came from a loading density of 0.3 g/cc. The s/v ratios were at one, three,
and Five ewm *.  The constant and proportional heat loss options were used so
we had six sets of burnlug rate agata that were varled while the rest of the
parameters in the 105-mm system remalned constant. Tour of the data sets
had less than a 1% change in peak pressure and muzzle velocity. These were
the three constant heat loss reductions and the one proportional option at
s/v of 1 e L, Input of data from the proportlonal option at s/v of 3 cm
shiowed an increase of 8% in peak pressure and a 3% increase in muzzle
velocity over the data From s/v of 1 cw” ' The amount of increcase was

-

rreater, 7% and 4% respectivaly, at s/v of 5 cm .

These flgures serve to point out that, for closed bomb burning rate
data used for iaterior ballistic predictions, heat loss problems way be
minimized by the use of a vessel with a s/v near 1 cm * and treating the
heat loss factor in a simplistic manner. Conversely, gun performance
predictions may be serlously atfected by the use of derived burning rate
data obtained with a vessel haviug a large s/v.

Y




IV. CONCLUSIONS & R=COMMENDATIONS

While the reduction of closed bomb data is not a simple task, thue heat
loss aspect of the reduction does not seem to be a very sensitive area,
This is provided that the vessel in use for the closed bomb operation has a
low surface area to volume ratio and the propellant fired has fairly rapid
burning rate., It may be possible to extend this observation to wmuch slower
granulations but further experimentation is necessary.
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APPENDIX

After the initial presentation of this paper at the 21st JANNAF
Combustion Meeting, some ideas and observations were brought up by some
wembers of the propellant community.

R A. Data Presentation

Q;f An alternate method of presenting the data was proposed, plotting s/v
: ratios versus burning rates at various pressures. It was argued that
plotting the data in such a way would moru readily reveal the surface area
effects on the derived burning rates. Two plots of this method of data
presentation are shown in Figures A-1 and A-2. As can be seen in Figure
A-1, which plots s/v vs. burn rate at 0.3 g/cc for the constant heat loss
option, the lines maintain a constant slope of zero at all pressures. The
constant zero slope indicates no s/v etfects on the derived burning rates.
In Figure A-2, however, in which data are plotted frowm the proportional heat
loss options, an increase in slope is noted, indicating a dependence of
derived burning rate on s/v ratio. The propused method of presentation, as
suggested, highlights the observed differences for the burning rate vs. s/v
effects.,

B. Tabular Thermochemical Input and Proportional Heat Loss Option

“:Ka{ The suggestion was also made that the discrepancies bhetween the derived
PN burning rates, which increased as the s/v increased, could be reduced

R through the use of the tabular thermochemical input option in CBRED when

= using the proportional heat loss option.

Figure A-3 compares the derived burning rates from the reductions that
had a loading density of 0.3 g/cc and s/v=l e}, The figure 1indicates
that, while there is no apparent difference between the proportional aud
constant heat loss options using average thermochems, the use of tabular
i thermochemlistry does show a slight difference at a s/v of 1 e, The
comparison of data frow the experiments that had a s/v of 5 cm - caun be
) observed in Figure A~4. This plot indilcates that the use of tabular
thermochemical input decreases the discrepancy between the derived burning
rates computed via average thermochemistry with either the constaat or
proportional heat loss option. Finally, Figure A-5 compares the derived
) burning rate results from data taken with a s/v of | cu * and 5 cm *, and
n‘ reduced using the proportional heat loss optlon and tabular thermochemicel
. input. The derived burniug rate data from s/v of 5 ew™ ! still falls above
A that Erom s/v of 1 cm—l, although the spread is about half as great as that
. from similar reductious using average thermochemistry.
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